

EXAMINATION PAPER 13+ Academic Scholarship 2023

Science (Paper 1)

Time allowed: 1 hour

Name: _____

Instructions

- Write your name clearly in the space above.
- Answer on this paper.
- Calculators are allowed.
- Answer ALL the questions in all sections.
- You are expected to write clearly and accurately throughout each of your answers. You should leave some time towards the end of the examination to check your work carefully.
- The maximum number of marks for this paper is 58.

SECTION ONE: BIOLOGY [20 Marks]

1. The diagram below shows a plant cell.

a. The cell is a leaf cell. Give the name of the part which is present in this leaf but not present in root cells.

[1 mark]
. Give two parts of the cell, labelled on the diagram, which are not present in animal cells.
[2 marks]

c. The five parts of the cell labelled on the diagram have different functions. Complete the table below and write the name of the correct part of the cell next to its function. The first has been done for you.

Function	Part of the cell
A place where many chemical reactions take place.	Cytoplasm
Photosynthesis takes place here.	
It controls the cell's activities	
It helps to keep the shape of the cell.	
It controls the substances entering and leaving the	
cell.	

[3 marks]

2. The diagram below shows bones and muscles of the human arm.

The biceps and triceps are muscles that contract to move the bones of the lower arm.

a. What do the biceps and triceps do to move the arm in the direction shown by the arrow?

Tick the correct box.

[1 mark]

b. Ligaments hold bones together at a joint. Ligaments can stretch.

Why must ligaments be able to stretch?

····

c. The diagram below shows an elbow joint.

[1 mark]

i. The ends of the bones at a joint are covered by a layer of smooth material called cartilage.

There is also a fluid in the joint.

Why are cartilage and fluid needed in a joint?

 	[1 mark]

ii. In the joint shown below, some of the cartilage has broken off.

Suggest one way this damage will affect the joint.

[1 mark]

3. This table shows the causes of death of cigarette smokers in Great Britain.

Cause of death	Percentage of deaths
Lung cancer	8
Bronchitis and emphysema	17
Circulatory diseases	20
Other causes (not related to smoking)	55

a. What percentage of smokers die from smoking-related diseases?

[2 marks]

b. Emphysema is a disease caused by smoking. The photograph on the left shows normal lung tissue and the photo on the right shows lung tissue from a person with emphysema.

Air sacs (alveoli) in human lung tissue.

A section of lung affected by emphysema.

i. Describe two differences between the normal lung tissue and lung tissue from a person with emphysema.

 	[2 marks]

ii. Suggest how these differences affect the supply of oxygen to the blood in the person with emphysema?

iii. Name two other diseases caused by smoking, and say what the symptoms would be (i.e. how the patient would be affected).

[4 marks]

SECTION TWO: CHEMISTRY [20 Marks]

A Periodic Table is provided.

		[]	[1	T	
	0	² Helium	20 20 10 40 Ar Ar 30 18	84 Krypton 36 131 131 Xenon 54	R Radon 86	
	7		19 Fluorina 9 35.5 Chlorina 17	Bromine Bromine 35 127 127 53	210 At Astatine 85	
	9		16 Oxygen 32 Sultur 15	79 79 86enium 34 128 128 Tellurium 52	210 Polonium 84	
	5		14 Nitrogen 31 33 15 15	75 75 AS Arsenic 33 33 33 51 51 51	Bismuth 83 Uth 83	
	4		28 Carbon 6 Silicon 28 Silicon	5 Sermanium 32 32 32 32 32 32 32 50 50 50 50 50 50 50 50 50 50 50 50 50	PD Lead B2	
	e		11 BBoron 5 27 27 27 13 14	allium al	204 Thailium 81	
				65 Zinc 30 30 112 Cadmium 48	Page 201 Mercury 80	
TABLE				63.5 63.5 Copper 29 29 108 8 iiver 47	197 Au Gold 79	
liodic				59 Nickel 106 Palladium 46	195 195 Platinum 78	
E PEP				59 Cobait 27 103 Af Af	192 Ir 77 77	
⊨				56 Fe Iron 26 AU AU	190 OS 76 76	ă aic
	Group	Hydrogen		55 Manganese 25 99 Technetium 43	186 Henium 75	Key Relative ator mass Symbol Name Atomic numb
		L		52 Chromium 24 86 Aolybdenum	Tungsten 74	
				Vanadium 23 93 83 Niobium A1	181 Ta 73 73	
				48 Titanium 22 91 Zirconium 40	Hamium 72	
				45 Scandium 21 Aftrium 33	139 Lanthanum 57 Actinium 89	
	N		9 Beryllium 4 Aagnesium 12	Calcium 20 Calcium 20 Strontium 38 33	137 137 Barium 56 226 226 226 88 Radium 88	
	-		Sodium Name	Potassium 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	133 133 CS Caesium 55 23 223 223 Fr Francium 87	
		Period	N 0	4 ro	9 1	

1. A student investigated the rate of reaction between marble chips and hydrochloric acid. **Figure 1** shows the apparatus the student used.

a. What is **A**?

Tick one box.

cotton wool

limestone

poly(ethene)

rubber bung

[1 mark]

b. Table 1 shows the student's results for one investigation.

Table 1

Time in s	Mass lost in g
0	0.0
20	1.6
40	2.6
60	2.9
80	3.7
100	4.0
120	4.0

On the grid below:

• Plot these results

c. Circle the anomalous point.

Explain how this anomaly could have occurred.

.....

[2 marks]

d. Use **your graph** to complete **Table 2**.

Table 2

Mass lost after 0.5 minutes	g
Time taken to complete the	C
reaction	5

e. The equation for the reaction is:

$$2HCl(aq) + CaCO_3(s) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

Explain why there is a loss in mass in this investigation.

[2 marks]

f. Another student investigated the rate of a different reaction.

Table 3 shows the results from the different reaction.

Table	3
-------	---

Mass lost when the reaction was complete	9.85 g
Time taken to complete the reaction	2 minutes 30 seconds

Calculate the mean rate of the reaction using **Table 3** and the equation:

mean rate of reaction = $\frac{\text{mass lost in g}}{\text{time taken in s}}$

Give your answer to two decimal places.

Mean rate of reaction = _____ g / s

g. The student measured the change in mass of the reactants.

Describe another method, other than measuring the change in mass of the reactions, that the student could have used to find the rate of the reaction between marble chips and hydrochloric acid.

•••••	 		
•••••	 •••••	•••••	••••••
			[2 marks]

- 2. The atoms of each element have different masses. These masses are given in the Periodic table.
 - a. Use the table below to calculate the masses of each of the **compounds** in the equation for the reaction between magnesium and sulphuric acid given.

Atom	Mass (μ)
Mg	24
Н	1
S	32
0	16

Equation:

	Mg (s)	+ H ₂ SO ₄ (aq)	à	MgSO ₄ (aq) +	- H ₂ (g)
Mass (g)	24				2

[2 marks]

b. Explain how these masses prove that mass is conserved in reactions.

[2 marks]

c. So, if 24g of magnesium reacts with sulphuric acid, 2g of hydrogen is produced. Calculate the mass of MgSO₄ that is formed from 1.2g of magnesium.

SECTION THREE: PHYSICS [18 Marks]

Questions 1 -9 are multiple choice. Clearly underline or circle the correct letter for each of the questions.

1.

A student measures the volume of a quantity of water.

Which apparatus is suitable?

- A a balance
- B a measuring cylinder
- **C** a ruler
- D a thermometer

2.

Which substance in the table has the lowest density?

	substance	mass/g	volume/cm ³
Α	nylon	1.2	1.0
в	cotton	1.5	1.0
С	olive oil	1.8	2.0
D	water	2.0	2.0

3.

A 100 cm beam balances as shown.

The pivot is moved 10 cm to the left.

What will be the effect of this change on the anticlockwise and clockwise moments about the pivot?

	anticlockwise moment	clockwise moment
A	decreases	decreases
в	decreases	increases
С	increases	decreases
D	increases	increases

4.

The box shown has a weight of 15 N.

The box is resting on a horizontal surface with face P in contact with the surface. What is the change in pressure on the surface if the box falls over onto face Q? A $0.0040 \text{ m}^2/\text{N}$ B $0.0067 \text{ m}^2/\text{N}$ C 100 N/m^2 D 250 N/m^2

5.

In which circuit is the ammeter measuring the flow of charge through the lamp?

6.

A 20 m long, uniform bridge of weight 100 kN is supported at each end by pillars, as shown.

The pillars exert forces T_1 and T_2 on the ends of the bridge.

What are the values of T_1 and T_2 when a van of weight 24 kN is on the bridge, 5 m from the left-hand pillar?

	T_1/kN	T_2/kN
Α	56	68
в	62	62
С	68	56
D	74	50

8. Consider the circuits shown below. In which circuit is the current flowing through the cell the largest?

9. The density and volume of five samples of material are plotted on the graph as shown. Which two samples have the same mass?

10.

a. Figure 1 shows some water in a tank.

Figure 1

i. The bottom of the tank has an area of $0.80m^2$.

The force on the bottom of the tank, due to the water, is 2400N

Calculate the pressure, due to the water, on the bottom of the tank.

Pressure =_____

[3 marks]

ii. More water is added to the tank.

Explain how the pressure on the bottom of the tank changes when more water is added to the tank.

b. Figure 2 is a graph showing how the atmospheric pressure change with the height above sea level on the Earth's surface.

Figure 2

An aeroplane descends from 600m to 2000m.

Use the graph to find the change in atmospheric pressure as the aeroplane descends.

Change in pressure = _____Pa

c. Figure 3 show two drawings of the same person on a bed.

Figure 3

Explain why the person exerts a different pressure on the bed when standing up than when lying down.

[2 Marks]